Some dual series equations involving Laguerre polynomials
نویسندگان
چکیده
منابع مشابه
Dual series equations involving generalized Laguerre polynomials
where α + β + 1 > β > 1 −m, σ + 1 > α + β > 0, m is a positive integer, and 0 < h < ∞, 0 ≤ b <∞, and h and b are finite constants. L n [(x + b)h] is a Laguerre polynomial, An are unknown coefficients, and f (x) and g(x) are prescribed functions. Srivastava [5, 6] has solved the following dual series equations: ∞ ∑ n=0 AnL (α) n (x) Γ(α+n+ 1) = f (x), 0 < x < a, (1.3) ∞ ∑ n=0 AnL (σ) n (x) Γ(α+n...
متن کاملDifferential equations for deformed Laguerre polynomials
The distribution function for the first eigenvalue spacing in the Laguerre unitary ensemble of finite size may be expressed in terms of a solution of the fifth Painlevé transcendent. The generating function of a certain discontinuous linear statistic of the Laguerre unitary ensemble can similarly be expressed in terms of a solution of the fifth Painlevé equation. The methodology used to derive ...
متن کاملSome Relations on Laguerre Matrix Polynomials
The main object of this paper is to give a di erent approach to proof of generating matrix functions for Laguerre matrix polynomials. We also obtain the hypergeometric matrix representations, addition theorem, nite summation formula and an integral representation for Laguerre matrix polynomials. We get the relations between Laguerre, Legendre and Hermite matrix polynomials. We get the generatin...
متن کاملDifferential equations for discrete Laguerre-Sobolev orthogonal polynomials
The aim of this paper is to study differential properties of orthogonal polynomials with respect to a discrete Laguerre–Sobolev bilinear form with mass point at zero. In particular we construct the orthogonal polynomials using certain Casorati determinants. Using this construction, we prove that they are eigenfunctions of a differential operator (which will be explicitly constructed). Moreover,...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1968
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1968.25.123